223 research outputs found

    Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.

    Get PDF
    The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling

    Methods in Mammary Gland Development and Cancer: the second ENDBC meeting - intravital imaging, genomics, modeling and metastasis

    Get PDF
    The second meeting of the European Network for Breast Development and Cancer (ENBDC) on 'Methods in Mammary Gland Development and Cancer' was held in April 2010 in Weggis, Switzerland. The focus was on genomics and bioinformatics, extracellular matrix and stroma-epithelial cell interactions, intravital imaging, the search for metastasis founder cells and mouse models of breast cancer

    Glucocorticoids promote breast cancer metastasis

    Get PDF
    Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy(1-3). Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade(4), remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.Peer reviewe

    Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.

    Get PDF
    The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy

    Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation

    Get PDF
    Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance

    Evolution of Resistance to Targeted Anti-Cancer Therapies during Continuous and Pulsed Administration Strategies

    Get PDF
    The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type
    • …
    corecore